Stochastic periodic solutions of stochastic differential equations driven by Lévy process
نویسندگان
چکیده
منابع مشابه
Optimal simulation schemes for Lévy driven stochastic differential equations
We consider a general class of high order weak approximation schemes for stochastic differential equations driven by Lévy processes with infinite activity. These schemes combine a compound Poisson approximation for the jump part of the Lévy process with a high order scheme for the Brownian driven component, applied between the jump times. The overall approximation is analyzed using a stochastic...
متن کاملAn Euler-Poisson scheme for Lévy driven stochastic differential equations
We describe an Euler scheme to approximate solutions of Lévy driven stochastic differential equations (SDEs) where the grid points are given by the arrival times of a Poisson process and thus are random. This result extends the previous work of FerreiroCastilla et al. (2014). We provide a complete numerical analysis of the algorithm to approximate the terminal value of the SDE and prove that th...
متن کاملExistence and Measurability of the Solution of the Stochastic Differential Equations Driven by Fractional Brownian Motion
متن کامل
Reflected Backward Stochastic Differential Equations Driven by Lévy Process
In this paper, we deal with a class of reflected backward stochastic differential equations associated to the subdifferential operator of a lower semi-continuous convex function driven by Teugels martingales associated with Lévy process. We obtain the existence and uniqueness of solutions to these equations by means of the penalization method. As its application, we give a probabilistic interpr...
متن کاملPathwise Random Periodic Solutions of Stochastic Differential Equations
In this paper, we study the existence of random periodic solutions for semilinear stochastic differential equations. We identify them as the solutions of coupled forward-backward infinite horizon stochastic integral equations in general cases. We then use the argument of the relative compactness of Wiener-Sobolev spaces in C([0, T ], L(Ω)) and generalized Schauder’s fixed point theorem to prove...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2015
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2015.04.090